Quantized compressed sensing for partial random circulant matrices

Joe Mei Feng, Felix Krahmer, Rayan Saab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

We provide the first analysis of a non-trivial quantization scheme for compressed sensing measurements arising from structured measurements. Specifically, our analysis studies compressed sensing matrices consisting of rows selected at random, without replacement, from a circulant matrix generated by a random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta schemes, and use a reconstruction method based on convex optimization. We show that the part of the reconstruction error due to quantization decays polynomially in the number of measurements. This is in-line with analogous results on Sigma-Delta quantization associated with random Gaussian or subgaussian matrices, and significantly better than results associated with the widely assumed memoryless scalar quantization.

OriginalspracheEnglisch
Titel2017 12th International Conference on Sampling Theory and Applications, SampTA 2017
Redakteure/-innenGholamreza Anbarjafari, Andi Kivinukk, Gert Tamberg
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten236-240
Seitenumfang5
ISBN (elektronisch)9781538615652
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2017
Veranstaltung12th International Conference on Sampling Theory and Applications, SampTA 2017 - Tallinn, Estland
Dauer: 3 Juli 20177 Juli 2017

Publikationsreihe

Name2017 12th International Conference on Sampling Theory and Applications, SampTA 2017

Konferenz

Konferenz12th International Conference on Sampling Theory and Applications, SampTA 2017
Land/GebietEstland
OrtTallinn
Zeitraum3/07/177/07/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantized compressed sensing for partial random circulant matrices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren