Quantization of Bandlimited Graph Signals

Felix Krahmer, He Lyu, Rayan Saab, Anna Veselovska, Rongrong Wang

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Graph models and graph-based signals are becoming increasingly important in machine learning, natural sciences, and modern signal processing. In this paper, we address the problem of quantizing bandlimited graph signals. We introduce two classes of noise-shaping algorithms for graph signals that differ in their sampling methodologies. We demonstrate that these algorithms can be efficiently used to construct quantized representatives of bandlimited graph-based signals with bounded amplitude. Moreover, for one of the algorithms, we provide theoretical guarantees on the relative error between the quantized representative and the true signal.

OriginalspracheEnglisch
Titel2023 International Conference on Sampling Theory and Applications, SampTA 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350328851
DOIs
PublikationsstatusVeröffentlicht - 2023
Extern publiziertJa
Veranstaltung2023 International Conference on Sampling Theory and Applications, SampTA 2023 - New Haven, USA/Vereinigte Staaten
Dauer: 10 Juli 202314 Juli 2023

Publikationsreihe

Name2023 International Conference on Sampling Theory and Applications, SampTA 2023

Konferenz

Konferenz2023 International Conference on Sampling Theory and Applications, SampTA 2023
Land/GebietUSA/Vereinigte Staaten
OrtNew Haven
Zeitraum10/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantization of Bandlimited Graph Signals“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren