Quantization of Bandlimited Functions Using Random Samples

Rohan Joy, Felix Krahmer, Alessandro Lupoli, Radha Ramakrishan

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We investigate the compatibility of distributed noise-shaping quantization with random samples of bandlimited functions. Let f be a real-valued π-bandlimited function. Suppose R > 1 is a real number, and assume that x_i _i = 1m is a sequence of i.i.d random variables uniformly distributed on \left[ - \tilde R,\tilde R ], where \tilde R > R is appropriately chosen. We show that on using a distributed noise-shaping quantizer to quantize the values of f at x_i _i = 1m, a function f can be reconstructed from these quantized values such that | f - f\sharp |_L2[ - R,R] decays with high probability as m and \tilde R increase.

OriginalspracheEnglisch
Titel2023 International Conference on Sampling Theory and Applications, SampTA 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350328851
DOIs
PublikationsstatusVeröffentlicht - 2023
Extern publiziertJa
Veranstaltung2023 International Conference on Sampling Theory and Applications, SampTA 2023 - New Haven, USA/Vereinigte Staaten
Dauer: 10 Juli 202314 Juli 2023

Publikationsreihe

Name2023 International Conference on Sampling Theory and Applications, SampTA 2023

Konferenz

Konferenz2023 International Conference on Sampling Theory and Applications, SampTA 2023
Land/GebietUSA/Vereinigte Staaten
OrtNew Haven
Zeitraum10/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantization of Bandlimited Functions Using Random Samples“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren