Quantization Effects of Deep Neural Networks on a FPGA platform

Daniel Pohl, Birgit Vogel-Heuser, Marius Kruger, Markus Echtler

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper, a quantization method for a FPGA platform is applied on three different deep neural networks (DNNs) for classification, detection and semantic segmentation tasks. The FPGA platform is based on a Xilinx Zynq UltraScale+ ZU5EV. The quantization process is done with the Vitis AI Quantizer tool of the AMD Vitis AI Environment. After a short description of the used DNNs, datasets and the technique behind the quantization process, the results are presented for different bit-widths of the quantized DNNs. The evaluation includes a post-training quantization of weights and activations in INT8 format with performance measurements in frames per second (FPS) on the target platform.

OriginalspracheEnglisch
Titel2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems, ICPS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350363012
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung7th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2024 - St. Louis, USA/Vereinigte Staaten
Dauer: 12 Mai 202415 Mai 2024

Publikationsreihe

Name2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems, ICPS 2024

Konferenz

Konferenz7th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2024
Land/GebietUSA/Vereinigte Staaten
OrtSt. Louis
Zeitraum12/05/2415/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantization Effects of Deep Neural Networks on a FPGA platform“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren