TY - GEN
T1 - Quantifying the Value of Vibration-Based Structural Health Monitoring Considering Environmental Variability
AU - Kamariotis, Antonios
AU - Chatzi, Eleni
AU - Straub, Daniel
N1 - Publisher Copyright:
© 2021 Structural Health Monitoring 2021: Enabling Next-Generation SHM for Cyber-Physical Systems - Proceedings of the 13th International Workshop on Structural Health Monitoring, IWSHM 2021. All rights reserved.
PY - 2021
Y1 - 2021
N2 - The value of structural health monitoring (SHM) can be quantified as the difference in expected total life-cycle costs between two different maintenance planning strategies, one representing the standard means to assessment, namely intermittent visual inspections, and the other based on availability of continuous SHM data. We show how to quantify the value of vibration-based SHM conditional on a damage history over the structural lifetime. We showcase the analysis through application on a numerical benchmark model of a two-span bridge system subjected to gradual deterioration and sudden damages in the middle elastic support over its life-cycle, simulating the case of scour. The effect of environmental variability is included in the analysis by means of a stochastic model for the dependence of the Young’s modulus on temperature (E-T). The numerical investigations provide insights related to the effect of the temperature variability, as well as the visual inspections’ quality, on the value of SHM.
AB - The value of structural health monitoring (SHM) can be quantified as the difference in expected total life-cycle costs between two different maintenance planning strategies, one representing the standard means to assessment, namely intermittent visual inspections, and the other based on availability of continuous SHM data. We show how to quantify the value of vibration-based SHM conditional on a damage history over the structural lifetime. We showcase the analysis through application on a numerical benchmark model of a two-span bridge system subjected to gradual deterioration and sudden damages in the middle elastic support over its life-cycle, simulating the case of scour. The effect of environmental variability is included in the analysis by means of a stochastic model for the dependence of the Young’s modulus on temperature (E-T). The numerical investigations provide insights related to the effect of the temperature variability, as well as the visual inspections’ quality, on the value of SHM.
UR - http://www.scopus.com/inward/record.url?scp=85139244891&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85139244891
T3 - Structural Health Monitoring 2021: Enabling Next-Generation SHM for Cyber-Physical Systems - Proceedings of the 13th International Workshop on Structural Health Monitoring, IWSHM 2021
SP - 1033
EP - 1040
BT - Structural Health Monitoring 2021
A2 - Farhangdoust, Saman
A2 - Guemes, Alfredo
A2 - Chang, Fu-Kuo
PB - DEStech Publications Inc.
T2 - 13th International Workshop on Structural Health Monitoring: Enabling Next-Generation SHM for Cyber-Physical Systems, IWSHM 2021
Y2 - 15 March 2022 through 17 March 2022
ER -