Quantifying Heterogeneity in Tumors: Proposing a New Method Utilizing Convolutional Neuronal Networks

Georg Prokop, Michael Örtl, Marina Fotteler, Peter Schüffler, Johannes Schobel, Walter Swoboda, Jürgen Schlegel, Friederike Liesche-Starnecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Heterogeneity is a hallmark of glioblastoma (GBM), the most common malignant brain tumor, and a key reason for the poor survival rate of patients. However, establishing a clinically applicable, cost-efficient tool to measure and quantify heterogeneity is challenging. We present a novel method in an ongoing study utilizing two convolutional neuronal networks (CNN). After digitizing tumor samples, the first CNN delimitates GBM from normal tissue, the second quantifies heterogeneity within the tumor. Since neuronal networks can detect and interpret underlying and hidden information within images and have the ability to incorporate different information sets (i.e. clinical data and mutational status), this approach might venture towards a next level of integrated diagnosis. It may be applicable to other tumors as well and lead to a more precision-based medicine.

OriginalspracheEnglisch
TitelInformatics and Technology in Clinical Care and Public Health
Redakteure/-innenJohn Mantas, Arie Hasman, Mowafa S. Househ, Parisis Gallos, Emmanouil Zoulias, Joseph Liasko
Herausgeber (Verlag)IOS Press BV
Seiten397-400
Seitenumfang4
ISBN (elektronisch)9781643682501
DOIs
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa

Publikationsreihe

NameStudies in Health Technology and Informatics
Band289
ISSN (Print)0926-9630
ISSN (elektronisch)1879-8365

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantifying Heterogeneity in Tumors: Proposing a New Method Utilizing Convolutional Neuronal Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren