QoE beyond the MOS: Added value using quantiles and distributions

Tobias Hoßfeld, Poul E. Heegaard, Martin Varela

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

18 Zitate (Scopus)

Abstract

Traditionally, Quality of Experience (QoE) assessment results (or objective estimations thereof) are presented as a single scalar value, typically a Mean Opinion Score (MOS). While useful, the limitations of MOS are evident even in its name; for many applications, just having a mean value is simply not enough. For service providers in particular, it would be more interesting to have an idea of how the scores are distributed, so as to ensure that a certain portion of the user population is experiencing satisfactory levels of quality, thus reducing churn. In this paper we propose different statistical measures to express important aspects of QoE beyond MOS like user diversity, uncertainty of user rating distributions, ratio of dissatisfied users. Further, we propose a way to use MOS values and the standard deviation of opinion scores (SOS) hypothesis, which postulates a quadratic relation between subjective scores and their standard deviation, in order to derive quantiles for subjective ratings.

OriginalspracheEnglisch
Titel2015 7th International Workshop on Quality of Multimedia Experience, QoMEX 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781479989584
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2015
Extern publiziertJa
Veranstaltung2015 7th International Workshop on Quality of Multimedia Experience, QoMEX 2015 - Costa Navarino, Messinia, Griechenland
Dauer: 26 Mai 201529 Mai 2015

Publikationsreihe

Name2015 7th International Workshop on Quality of Multimedia Experience, QoMEX 2015

Konferenz

Konferenz2015 7th International Workshop on Quality of Multimedia Experience, QoMEX 2015
Land/GebietGriechenland
OrtCosta Navarino, Messinia
Zeitraum26/05/1529/05/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „QoE beyond the MOS: Added value using quantiles and distributions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren