QO-Insight: Inspecting Steered Query Optimizers

Christoph Anneser, Mario Petruccelli, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus, Alfons Kemper

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

Steered query optimizers address the planning mistakes of traditional query optimizers by providing them with hints on a per-query basis, thereby guiding them in the right direction. This paper introduces QO-Insight, a visual tool designed for exploring query execution traces of such steered query optimizers. Although steered query optimizers are typically perceived as black boxes, QO-Insight empowers database administrators and experts to gain qualitative insights and enhance their performance through visual inspection and analysis.

OriginalspracheEnglisch
Seiten (von - bis)3922-3925
Seitenumfang4
FachzeitschriftProceedings of the VLDB Endowment
Jahrgang16
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung49th International Conference on Very Large Data Bases, VLDB 2023 - Vancouver, Kanada
Dauer: 28 Aug. 20231 Sept. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „QO-Insight: Inspecting Steered Query Optimizers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren