q-space deep learning for twelve-fold shorter and model-free diffusion MRI scans

Vladimir Golkov, Alexey Dosovitskiy, Philipp Sämann, Jonathan I. Sperl, Tim Sprenger, Michael Czisch, Marion I. Menzel, Pedro A. Gómez, Axel Haase, Thomas Brox, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

14 Zitate (Scopus)

Abstract

Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep learning, a group of algorithms in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This method allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Herausgeber (Verlag)Springer Verlag
Seiten37-44
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2015

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9349
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „q-space deep learning for twelve-fold shorter and model-free diffusion MRI scans“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren