PWM-based sensorless control of electrically excited synchronous machine using mutual inductance

Han Byul Chung, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This paper proposes a sensorless control of an electrically excited synchronous machine (EESM) using mutual inductance. EESM is a synchronous machine that has a field winding to generate field flux. The field winding and the stator winding are mutually coupled together with mutual inductance. The mutual inductance is derived as a function of the rotor position by the principle of a rotary transformer. With the derived mutual inductance, the proposed method estimates the rotor position from the mutually induced field current by fundamental pulse-width modulation (PWM) switching voltage of stator winding. High-frequency current sampling synchronized with PWM switching is used to process the field current. The simulation results of sensorless speed control and position estimation under saturation condition validate the proposed method and its robustness to parameter variation.

OriginalspracheEnglisch
Titel2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten232-236
Seitenumfang5
ISBN (elektronisch)9781728170190
DOIs
PublikationsstatusVeröffentlicht - Juni 2020
Veranstaltung2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020 - Sorrento, Italien
Dauer: 24 Juni 202026 Juni 2020

Publikationsreihe

Name2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Konferenz

Konferenz2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020
Land/GebietItalien
OrtSorrento
Zeitraum24/06/2026/06/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „PWM-based sensorless control of electrically excited synchronous machine using mutual inductance“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren