Probabilistic Job History Conversion and Performance Model Generation for Malleable Scheduling Simulations

Isaías Comprés, Eishi Arima, Martin Schulz, Tiberiu Rotaru, Rui Machado

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Malleability support in supercomputing requires several updates to system software stacks. In addition to this, updates to applications, libraries and the runtime systems of distributed memory programming models are also necessary. Because of this, there are relatively few applications that have been extended or developed with malleability support. As a consequence, there are no job histories from production systems that include sufficient malleable job submissions for scheduling research. In this paper, we propose a solution: a probabilistic job history conversion. This conversion allows us to evaluate malleable scheduling heuristics via simulations based on existing job histories. Based on a configurable probability, job arrivals are converted into malleable versions, and assigned a malleable performance model. This model is used by the simulator to evaluate its changes at runtime, as an effect of malleable operations being applied to it.

OriginalspracheEnglisch
TitelHigh Performance Computing - ISC High Performance 2023 International Workshops, Revised Selected Papers
Redakteure/-innenAmanda Bienz, Michèle Weiland, Marc Baboulin, Carola Kruse
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten82-94
Seitenumfang13
ISBN (Print)9783031408427
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung38th International Conference on High Performance Computing, ISC High Performance 2023 - Hamburg, Deutschland
Dauer: 21 Mai 202325 Mai 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13999 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz38th International Conference on High Performance Computing, ISC High Performance 2023
Land/GebietDeutschland
OrtHamburg
Zeitraum21/05/2325/05/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Probabilistic Job History Conversion and Performance Model Generation for Malleable Scheduling Simulations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren