Primal-dual interior-point methods for PDE-constrained optimization

Michael Ulbrich, Stefan Ulbrich

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

34 Zitate (Scopus)

Abstract

This paper provides a detailed analysis of a primal-dual interior-point method for PDE-constrained optimization. Considered are optimal control problems with control constraints in L p . It is shown that the developed primal-dual interior-point method converges globally and locally superlinearly. Not only the easier L -setting is analyzed, but also a more involved L q -analysis, q < ∞, is presented. In L , the set of feasible controls contains interior points and the Fréchet differentiability of the perturbed optimality system can be shown. In the L q -setting, which is highly relevant for PDE-constrained optimization, these nice properties are no longer available. Nevertheless, a convergence analysis is developed using refined techniques. In parti- cular, two-norm techniques and a smoothing step are required. The L q -analysis with smoothing step yields global linear and local superlinear convergence, whereas the L -analysis without smoothing step yields only global linear convergence.

OriginalspracheEnglisch
Seiten (von - bis)435-485
Seitenumfang51
FachzeitschriftMathematical Programming
Jahrgang117
Ausgabenummer1-2
DOIs
PublikationsstatusVeröffentlicht - März 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Primal-dual interior-point methods for PDE-constrained optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren