Preventing bad plans by bounding the impact of cardinality estimation errors

Guido Moerkotte, Thomas Neumann, Gabriele Steidl

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

131 Zitate (Scopus)

Abstract

Query optimizers rely on accurate estimations of the sizes of intermediate results. Wrong size estimations can lead to overly expensive execution plans. We first define the q-error to measure deviations of size estimates from actual sizes. The q-error enables the derivation of two important results: (1) We provide bounds such that if the q-error is smaller than this bound, the query optimizer constructs an optimal plan. (2) If the q-error is bounded by a number q, we show that the cost of the produced plan is at most a factor of q4 worse than the optimal plan. Motivated by these findings, we next show how to find the best approximation under the q-error. These techniques can then be used to build synopsis for size estimates. Finally, we give some experimental results where we apply the developed techniques.

OriginalspracheEnglisch
Seiten (von - bis)982-993
Seitenumfang12
FachzeitschriftProceedings of the VLDB Endowment
Jahrgang2
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2009
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Preventing bad plans by bounding the impact of cardinality estimation errors“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren