Predictive Torque Control without Weighting Factors for Doubly-Fed Induction Generators in Wind Turbine Applications

Mohamed Abdelrahem, Ralph Kennel, Christoph Hackl, Jose Rodriguez

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

This paper presents a predictive torque control (PTC) method for doubly-fed induction generators (DFIGs) without weighting factors. The proposed control technique is based on calculating the d-axis reference current from the reference torque. Furthermore, the q-axis reference current is employed to regulate the reactive power exchange between the stator of the DFIG and the grid. Then, thereference voltage vector (VV) is directly computed from the reference current vector using the deadbeat principle. Finally, according to the location of this reference VV, only three evaluations of the cost function are required. The cost function includes only the error between the reference VV and the candidates ones, which eliminates the need for weighting factors. Experimental results using a dSPACE DS1007 real-time platform and a 10kW DFIG are presented to verify the feasibility of theproposed control method.

OriginalspracheEnglisch
Titel2020 IEEE 21st Workshop on Control and Modeling for Power Electronics, COMPEL 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728171609
DOIs
PublikationsstatusVeröffentlicht - 9 Nov. 2020
Veranstaltung21st IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2020 - Aalborg, Dänemark
Dauer: 9 Nov. 202012 Nov. 2020

Publikationsreihe

Name2020 IEEE 21st Workshop on Control and Modeling for Power Electronics, COMPEL 2020

Konferenz

Konferenz21st IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2020
Land/GebietDänemark
OrtAalborg
Zeitraum9/11/2012/11/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive Torque Control without Weighting Factors for Doubly-Fed Induction Generators in Wind Turbine Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren