Predictive modeling for vehicle time-series data

J. Wallner, F. Diermeyer, S. Engel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The majority of data in current vehicles is evaluated solely in a local manner. The proposed method offers the possibility of using the latest data analysis techniques to develop functions for active safety and driver assistance systems, or vehicle testing of automated driving systems. We show an approach that combines the advantages of machine learning for logged vehicle data with the ability to use the predictive models created online in vehicles. Starting with intelligent data pre-processing, optimal conditions for the analysis step are established. Using machine learning techniques, predictive models are created to estimate various kinds of outcome variables. The concept is shown using the example of estimating the dynamic criticality in vehicles, based on driving dynamics signals and radar data.

OriginalspracheEnglisch
TitelAdvanced Vehicle Control AVEC’16 - Proceedings of the 13th International Symposium on Advanced Vehicle Control AVEC’16
Redakteure/-innenJohannes Edelmann, Manfred Plochl, Peter E. Pfeffer
Herausgeber (Verlag)CRC Press/Balkema
Seiten477-482
Seitenumfang6
ISBN (Print)9781315265285
PublikationsstatusVeröffentlicht - 2017
Veranstaltung13th International Symposium on Advanced Vehicle Control, AVEC 2016 - Munich, Deutschland
Dauer: 13 Sept. 201616 Sept. 2016

Publikationsreihe

NameAdvanced Vehicle Control AVEC’16: Proceedings of the 13th International Symposium on Advanced Vehicle Control (AVEC'16)

Konferenz

Konferenz13th International Symposium on Advanced Vehicle Control, AVEC 2016
Land/GebietDeutschland
OrtMunich
Zeitraum13/09/1616/09/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive modeling for vehicle time-series data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren