Predictive Model Development to Identify Failed Healing in Patients after Non-Union Fracture Surgery

Cedric Donié, Marie K. Reumann, Tony Hartung, Benedikt J. Braun, Tina Histing, Satoshi Endo, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Bone non-union is among the most severe complications associated with trauma surgery, occurring in 10-30 % of cases after long bone fractures. Treating non-unions requires a high level of surgical expertise and often involves multiple revision surgeries, sometimes even leading to amputation. Thus, more accurate prognosis is crucial for patient well-being.Recent advances in machine learning (ML) hold promise for developing models to predict non-union healing, even when working with smaller datasets, a commonly encountered challenge in clinical domains. To demonstrate the effectiveness of ML in identifying candidates at risk of failed non-union healing, we applied three ML models - logistic regression, support vector machine, and XGBoost - to the clinical dataset TRUFFLE, which includes 797 patients with long bone non-union.The models provided prediction results with 70% sensitivity, and the specificities of 66 % (XGBoost), 49 % (support vector machine), and 43 % (logistic regression). These findings offer valuable clinical insights because they enable early identification of patients at risk of failed non-union healing after the initial surgical revision treatment protocol.

OriginalspracheEnglisch
Titel46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350371499
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, USA/Vereinigte Staaten
Dauer: 15 Juli 202419 Juli 2024

Publikationsreihe

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Konferenz

Konferenz46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Land/GebietUSA/Vereinigte Staaten
OrtOrlando
Zeitraum15/07/2419/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive Model Development to Identify Failed Healing in Patients after Non-Union Fracture Surgery“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren