Predictive Error Model-Based Enhanced Observer for PMSM Deadbeat Control Systems

Dongliang Ke, Fengxiang Wang, Xinhong Yu, S. Alireza Davari, Ralph Kennel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

24 Zitate (Scopus)

Abstract

To achieve high robustness and performance, this article proposes an enhanced observer based on a predictive error model for the deadbeat predictive current control method (DPCC-PEMO). First, the mathematical model of permanent magnet synchronous motor (PMSM), deadbeat predictive current control (DPCC) method, and disturbance analysis are presented. Second, to estimate the trend of current variation in advance under nonlinear disturbance effect of model mismatch, the predictive error model is designed based on the recursive least squares (RLS) algorithm. Furthermore, the enhanced observer combined with the predictive error model (PEMO) is proposed, and its stability and high convergence are proved. Finally, utilizing the PEMO, the predictive current model is established and the proposed DPCC method is developed. The experimental results validate the strong robustness and excellent dynamic tracking performance of the proposed method in PMSM systems.

OriginalspracheEnglisch
Seiten (von - bis)2242-2252
Seitenumfang11
FachzeitschriftIEEE Transactions on Industrial Electronics
Jahrgang71
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 März 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive Error Model-Based Enhanced Observer for PMSM Deadbeat Control Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren