Predictive action selector for generating meaningful robot behaviour from minimum amount of samples

Erhard Wieser, Gordon Cheng

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

Our aim is to better understand the action selection process of intelligent systems by looking at their ability of internal prediction. In robotic systems, one problem is to generate meaningful robot behaviour with a very small and simple set of trained motions. An additional problem is to compensate for incomplete sensory data while generating behaviour. We propose a new predictive action selector to contribute to the solution of these problems. Our action selector predicts task-relevant feature and motion sequences, and uses the prediction results to select the robot action. We validate our implemented model on a humanoid robot. The robot generates meaningful behaviour composed out of very simple and few trained motions, and at the same time it compensates for incomplete sensory data such as temporary loss of task-relevant visual features.

OriginalspracheEnglisch
TitelIEEE ICDL-EPIROB 2014 - 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten139-145
Seitenumfang7
ISBN (elektronisch)9781479975402
DOIs
PublikationsstatusVeröffentlicht - 11 Dez. 2014
Veranstaltung4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, IEEE ICDL-EPIROB 2014 - Genoa, Italien
Dauer: 13 Okt. 201416 Okt. 2014

Publikationsreihe

NameIEEE ICDL-EPIROB 2014 - 4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics

Konferenz

Konferenz4th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, IEEE ICDL-EPIROB 2014
Land/GebietItalien
OrtGenoa
Zeitraum13/10/1416/10/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predictive action selector for generating meaningful robot behaviour from minimum amount of samples“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren