Prediction of window handle state using machine learning

Michael Vollmer, Marina Langer, Farzan Banihashemi, Hannes Harter, Daniel Kierdorf, Werner Lang

Publikation: Beitrag in PeriodikumArtikel

2 Zitate (Scopus)

Abstract

The project described in this paper investigates the energy-relevant behavior of window control actions of the occupants of an office building in Regensburg, Germany. The extensive data monitoring regarding energy consumption, indoor as well as outdoor climate, and window control actions (state of the window handle) started in 2017. Different machine learning classification algorithms are used together with the measured data to train models for the prediction of window openings and closings. The procedure is designed to identify the potentials and limitations of the realistic forecasting of occupant behavior based on the available data.

OriginalspracheEnglisch
Seiten352-359
Seitenumfang8
Band42
Nummer6
FachbuchBauphysik
DOIs
PublikationsstatusVeröffentlicht - Dez. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Prediction of window handle state using machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren