TY - JOUR
T1 - Prediction of incidental osteoporotic fractures at vertebral-specific level using 3d non-linear finite element parameters derived from routine abdominal mdct
AU - Yeung, Long Yu
AU - Rayudu, Nithin Manohar
AU - Löffler, Maximilian
AU - Sekuboyina, Anjany
AU - Burian, Egon
AU - Sollmann, Nico
AU - Dieckmeyer, Michael
AU - Greve, Tobias
AU - Kirschke, Jan S.
AU - Subburaj, Karupppasamy
AU - Baum, Thomas
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021
Y1 - 2021
N2 - To investigate whether finite element (FE) analysis of the spine in routine thoracic/abdominal multi-detector computed tomography (MDCT) can predict incidental osteoporotic fractures at vertebral-specific level; Baseline routine thoracic/abdominal MDCT scans of 16 subjects (8(m), mean age: 66.1 ± 8.2 years and 8(f), mean age: 64.3 ± 9.5 years) who sustained incidental osteoporotic vertebral fractures as confirmed in follow-up MDCTs were included in the current study. Thoracic and lumbar vertebrae (T5-L5) were automatically segmented, and bone mineral density (BMD), finite element (FE)-based failure-load, and failure-displacement were determined. These values of individual vertebrae were normalized globally (g), by dividing the absolute value with the average of L1-3 and locally by dividing the absolute value with the average of T5-12 and L1-5 for thoracic and lumbar vertebrae, respectively. Mean-BMD of L1-3 was determined as reference. Receiver operating characteristics (ROC) and area under the curve (AUC) were calculated for different normalized FE (Kload, Kdisplacement,K(load)g, and K(displacement)g) and BMD (KBMD, and K(BMD)g) ratio parameter com-binations for identifying incidental fractures. Kload, K(load)g, KBMD, and K(BMD)g showed significantly higher discriminative power compared to standard mean BMD of L1-3 (BMDStandard) (AUC = 0.67 for Kload; 0.64 for K(load)g; 0.64 for KBMD; 0.61 for K(BMD)g vs. 0.54 for BMDStandard). The combination of Kload, Kdisplacement, and KBMD increased the AUC further up to 0.77 (p < 0.001). The combination of FE with BMD measurements derived from routine thoracic/abdominal MDCT allowed an improved prediction of incidental fractures at vertebral-specific level.
AB - To investigate whether finite element (FE) analysis of the spine in routine thoracic/abdominal multi-detector computed tomography (MDCT) can predict incidental osteoporotic fractures at vertebral-specific level; Baseline routine thoracic/abdominal MDCT scans of 16 subjects (8(m), mean age: 66.1 ± 8.2 years and 8(f), mean age: 64.3 ± 9.5 years) who sustained incidental osteoporotic vertebral fractures as confirmed in follow-up MDCTs were included in the current study. Thoracic and lumbar vertebrae (T5-L5) were automatically segmented, and bone mineral density (BMD), finite element (FE)-based failure-load, and failure-displacement were determined. These values of individual vertebrae were normalized globally (g), by dividing the absolute value with the average of L1-3 and locally by dividing the absolute value with the average of T5-12 and L1-5 for thoracic and lumbar vertebrae, respectively. Mean-BMD of L1-3 was determined as reference. Receiver operating characteristics (ROC) and area under the curve (AUC) were calculated for different normalized FE (Kload, Kdisplacement,K(load)g, and K(displacement)g) and BMD (KBMD, and K(BMD)g) ratio parameter com-binations for identifying incidental fractures. Kload, K(load)g, KBMD, and K(BMD)g showed significantly higher discriminative power compared to standard mean BMD of L1-3 (BMDStandard) (AUC = 0.67 for Kload; 0.64 for K(load)g; 0.64 for KBMD; 0.61 for K(BMD)g vs. 0.54 for BMDStandard). The combination of Kload, Kdisplacement, and KBMD increased the AUC further up to 0.77 (p < 0.001). The combination of FE with BMD measurements derived from routine thoracic/abdominal MDCT allowed an improved prediction of incidental fractures at vertebral-specific level.
KW - Finite element analysis
KW - Incidental vertebral fracture
KW - Multidetector computed tomography
KW - Osteoporosis
KW - Spine
UR - http://www.scopus.com/inward/record.url?scp=85108841803&partnerID=8YFLogxK
U2 - 10.3390/diagnostics11020208
DO - 10.3390/diagnostics11020208
M3 - Article
AN - SCOPUS:85108841803
SN - 2075-4418
VL - 11
JO - Diagnostics
JF - Diagnostics
IS - 2
M1 - 208
ER -