Predicting the Optimizability for Workflow Decisions

Burak Mete, Martin Schulz, Martin Ruefenacht

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

With the rapid advancement of quantum technologies, the integration between classical and quantum computing systems is an active area of research critical to future development. The coupling between these systems requires both to be as efficient as possible. One of the key elements to increase efficiency on the quantum side is circuit optimization. The goal is to execute the circuit on the desired hardware in less time and with less complexity, thereby reducing the impact of noise on the quantum system. However, the optimization process does not guarantee to generate improved results, yet it is always a computationally highly complex task that can create significant load for the classical computing side. To mitigate this problem, we propose a novel approach to predict the optimizability of any circuit using a Machine Learning-based algorithm within the decision workflow. This optimizes the most suitable circuits thereby increasing efficiency of the optimization process itself.

OriginalspracheEnglisch
TitelProceedings of QCS 2022
Untertitel3rd International Workshop on Quantum Computing Software, Held in conjunction with SC 2022: The International Conference for High Performance Computing, Networking, Storage and Analysis
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten68-74
Seitenumfang7
ISBN (elektronisch)9781665475365
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung3rd IEEE/ACM International Workshop on Quantum Computing Software, QCS 2022 - Dallas, USA/Vereinigte Staaten
Dauer: 13 Nov. 202213 Nov. 2022

Publikationsreihe

NameProceedings of QCS 2022: 3rd International Workshop on Quantum Computing Software, Held in conjunction with SC 2022: The International Conference for High Performance Computing, Networking, Storage and Analysis

Konferenz

Konferenz3rd IEEE/ACM International Workshop on Quantum Computing Software, QCS 2022
Land/GebietUSA/Vereinigte Staaten
OrtDallas
Zeitraum13/11/2213/11/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting the Optimizability for Workflow Decisions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren