Predicting the bioactive conformations of macrocycles: a molecular dynamics-based docking procedure with DynaDock

Ilke Ugur, Maja Schroft, Antoine Marion, Manuel Glaser, Iris Antes

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Macrocyclic compounds are of growing interest as a new class of therapeutics, especially as inhibitors binding to protein–protein interfaces. As molecular modeling is a well-established complimentary tool in modern drug design, the number of attempts to develop reliable docking strategies and algorithms to accurately predict the binding mode of macrocycles is rising continuously. Standard molecular docking approaches need to be adapted to this application, as a comprehensive yet efficient sampling of all ring conformations of the macrocycle is necessary. To overcome this issue, we designed a molecular dynamics-based docking protocol for macrocycles, in which the challenging sampling step is addressed by conventional molecular dynamics (750 ns) simulations performed at moderately high temperature (370 K). Consecutive flexible docking with the DynaDock approach based on multiple, pre-sampled ring conformations yields highly accurate poses with ligand RMSD values lower than 1.8 Å. We further investigated the value of molecular dynamics-based complex stability estimations for pose selection and discuss its applicability in combination with standard binding free energy estimations for assessing the quality of poses in future blind docking studies.

OriginalspracheEnglisch
Aufsatznummer197
FachzeitschriftJournal of Molecular Modeling
Jahrgang25
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting the bioactive conformations of macrocycles: a molecular dynamics-based docking procedure with DynaDock“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren