Predicting semantic building information (BIM) with Recurrent Neural Networks

B. Mete, J. Bielski, C. Langenhan, F. Petzold, V. Eisenstadt, K. D. Althoff

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Recent advances in technology established artificial intelligence (AI) as a crucial domain of computer science for industry, research and everyday life. Even though computer-aided architectural design (CAAD) and digital semantic building models (BIM) are essential aspects of the contemporary architectural design process, the acquisition of proper data proves challenging and AI methods are absent in established design software. An option to acquire rich data are design protocol studies sequenced through meaningful relations. However, this data requires a framework for pre-processing and training artificial neural networks (ANN). In this paper, we present our research on BIM and AI for autocompletion through suggesting further design steps to improve the design process of the early design stages, based on the methods of the ‘metis’ projects. We propose a recurrent neural network (RNN) model to predict future design phases through sequential learning of cognitive sequences, utilising enriched sketch protocol data.

OriginalspracheEnglisch
TiteleWork and eBusiness in Architecture, Engineering and Construction - Proceedings of the 14th European Conference on Product and Process Modelling, ECPPM 2022
Redakteure/-innenEilif Hjelseth, Sujesh F. Sujan, Raimar J. Scherer
Herausgeber (Verlag)CRC Press/Balkema
Seiten321-326
Seitenumfang6
ISBN (Print)9781032406732
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung14th European Conference on Product and Process Modelling, ECPPM 2022 - Trondheim, Norwegen
Dauer: 14 Sept. 202216 Sept. 2022

Publikationsreihe

NameeWork and eBusiness in Architecture, Engineering and Construction - Proceedings of the 14th European Conference on Product and Process Modelling, ECPPM 2022

Konferenz

Konferenz14th European Conference on Product and Process Modelling, ECPPM 2022
Land/GebietNorwegen
OrtTrondheim
Zeitraum14/09/2216/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting semantic building information (BIM) with Recurrent Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren