Predicting Latency Quantiles using Network Calculus-assisted GNNs

Max Helm, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Network digital twins commonly rely on Graph Neural Networks (GNNs) as functional models. They typically predict network performance metrics, such as latencies. Most approaches have one of the following restrictions: they use simulated data, predict mean values, or don't utilize formal method results as inputs. We introduce an approach that: (I) relies on data obtained from a hardware testbed, increasing realism, (II) predicts quantiles in addition to means, increasing flexibility and applicability, (III) uses the formal method of network calculus to obtain input features, increasing prediction accuracy. We show that latencies in hardware testbeds can be predicted at different quantiles with median relative errors between 8% and 29% using a simple GNN architecture. Furthermore, we show that network calculus bounds are especially useful for predicting higher quantiles and that they mostly correct large prediction errors.

OriginalspracheEnglisch
TitelGNNet 2023 - Proceedings of the 2nd Graph Neural Networking Workshop 2023
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten13-18
Seitenumfang6
ISBN (elektronisch)9798400704482
DOIs
PublikationsstatusVeröffentlicht - 8 Dez. 2023
Veranstaltung2nd Graph Neural Networking Workshop, GNNet 2023 - Paris, Frankreich
Dauer: 8 Dez. 2023 → …

Publikationsreihe

NameGNNet 2023 - Proceedings of the 2nd Graph Neural Networking Workshop 2023

Konferenz

Konferenz2nd Graph Neural Networking Workshop, GNNet 2023
Land/GebietFrankreich
OrtParis
Zeitraum8/12/23 → …

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting Latency Quantiles using Network Calculus-assisted GNNs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren