Predicting against the Flow: Boosting Source Localization by Means of Field Belief Modeling using Upstream Source Proximity

Finn L. Busch, Nathalie Bauschmann, Sami Haddadin, Robert Seifried, Daniel A. Duecker

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Time-effective and accurate source localization with mobile robots is crucial in safety-critical scenarios, e.g. leakage detection. This becomes particular challenging in realistic cluttered scenarios, i.e. in the presence of complex current flows or wind. Traditional methods often fall short due to simplifications or limited onboard resources.We propose to combine source localization with a Gaussian Markov Random Field (GMRF). This allows to improve source localization hypotheses by building on the GMRF's concentration and flow field belief that are continuously updated by gathered measurements. We introduce the upstream source proximity (USP) as a natural metric that exploits the joint knowledge represented in the field belief's concentration and flow field, i.e. predicting sources upstream. As a result, our method yields a computationally efficient source localization and field belief module providing substantially more stable gradients than conventional concentration gradient-based methods.We demonstrate the suitability of our approach in a series of numerical experiments covering complex source location scenarios. With regard to computational requirements, the method achieves update rates of 10Hz on a RaspberryPi4B.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6254-6259
Seitenumfang6
ISBN (elektronisch)9798350384574
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Land/GebietJapan
OrtYokohama
Zeitraum13/05/2417/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predicting against the Flow: Boosting Source Localization by Means of Field Belief Modeling using Upstream Source Proximity“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren