Abstract
Neural message passing algorithms for semi-supervised classification on graphs have recently achieved great success. However, for classifying a node these methods only consider nodes that are a few propagation steps away and the size of this utilized neighborhood is hard to extend. In this paper, we use the relationship between graph convolutional networks (GCN) and PageRank to derive an improved propagation scheme based on personalized PageRank. We utilize this propagation procedure to construct a simple model, personalized propagation of neural predictions (PPNP), and its fast approximation, APPNP. Our model's training time is on par or faster and its number of parameters on par or lower than previous models. It leverages a large, adjustable neighborhood for classification and can be easily combined with any neural network. We show that this model outperforms several recently proposed methods for semi-supervised classification in the most thorough study done so far for GCN-like models. Our implementation is available online.
Originalsprache | Englisch |
---|---|
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | 7th International Conference on Learning Representations, ICLR 2019 - New Orleans, USA/Vereinigte Staaten Dauer: 6 Mai 2019 → 9 Mai 2019 |
Konferenz
Konferenz | 7th International Conference on Learning Representations, ICLR 2019 |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Ort | New Orleans |
Zeitraum | 6/05/19 → 9/05/19 |