Predict then propagate: Graph neural networks meet personalized PageRank

Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann

Publikation: KonferenzbeitragPapierBegutachtung

598 Zitate (Scopus)

Abstract

Neural message passing algorithms for semi-supervised classification on graphs have recently achieved great success. However, for classifying a node these methods only consider nodes that are a few propagation steps away and the size of this utilized neighborhood is hard to extend. In this paper, we use the relationship between graph convolutional networks (GCN) and PageRank to derive an improved propagation scheme based on personalized PageRank. We utilize this propagation procedure to construct a simple model, personalized propagation of neural predictions (PPNP), and its fast approximation, APPNP. Our model's training time is on par or faster and its number of parameters on par or lower than previous models. It leverages a large, adjustable neighborhood for classification and can be easily combined with any neural network. We show that this model outperforms several recently proposed methods for semi-supervised classification in the most thorough study done so far for GCN-like models. Our implementation is available online.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2019
Veranstaltung7th International Conference on Learning Representations, ICLR 2019 - New Orleans, USA/Vereinigte Staaten
Dauer: 6 Mai 20199 Mai 2019

Konferenz

Konferenz7th International Conference on Learning Representations, ICLR 2019
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum6/05/199/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Predict then propagate: Graph neural networks meet personalized PageRank“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren