PoseNetwork: Pipeline for the Automated Generation of Synthetic Training Data and CNN for Object Detection, Segmentation, and Orientation Estimation

Alejandro Magaña, Hang Wu, Philipp Bauer, Gunther Reinhart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

The latest developments and research of convolutional neuronal networks (CNNs) have proven the feasibility of their use in industrial applications that require object detection and pose estimation in unknown environments. Nevertheless, the end-users have neither the required resources for model-training nor the expertise to efficiently implement such applications. On the one hand, our work proposes a pipeline that focuses on the automated generation of training data by using synthetic images. On the other hand, we introduce a deep neural network to estimate the orientation of a reference object by using a one-shot image. We demonstrate the use of PoseNetwork by detecting and estimating the 5D-Pose of a workpiece in a robot-based inspection cell.

OriginalspracheEnglisch
TitelProceedings - 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten587-594
Seitenumfang8
ISBN (elektronisch)9781728189567
DOIs
PublikationsstatusVeröffentlicht - Sept. 2020
Veranstaltung25th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2020 - Vienna, Österreich
Dauer: 8 Sept. 202011 Sept. 2020

Publikationsreihe

NameIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
Band2020-September
ISSN (Print)1946-0740
ISSN (elektronisch)1946-0759

Konferenz

Konferenz25th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2020
Land/GebietÖsterreich
OrtVienna
Zeitraum8/09/2011/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „PoseNetwork: Pipeline for the Automated Generation of Synthetic Training Data and CNN for Object Detection, Segmentation, and Orientation Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren