PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics

Derui Zhu, Dingfan Chen, Qing Li, Zongxiong Chen, Lei Ma, Jens Grossklags, Mario Fritz

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Despite tremendous advancements in large language models (LLMs) over recent years, a notably urgent challenge for their practical deployment is the phenomenon of “hallucination”, where the model fabricates facts and produces non-factual statements. In response, we propose PoLLMgraph-a Polygraph for LLMs-as an effective model-based white-box detection and forecasting approach. PoLLMgraph distinctly differs from the large body of existing research that concentrates on addressing such challenges through black-box evaluations. In particular, we demonstrate that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics during generation via tractable probabilistic models. Experimental results on various open-source LLMs confirm the efficacy of PoLLMgraph, outperforming state-of-the-art methods by a considerable margin, evidenced by over 20% improvement in AUCROC on common benchmarking datasets like TruthfulQA. Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.

OriginalspracheEnglisch
TitelFindings of the Association for Computational Linguistics
UntertitelNAACL 2024 - Findings
Redakteure/-innenKevin Duh, Helena Gomez, Steven Bethard
Herausgeber (Verlag)Association for Computational Linguistics (ACL)
Seiten4737-4751
Seitenumfang15
ISBN (elektronisch)9798891761193
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 Findings of the Association for Computational Linguistics: NAACL 2024 - Mexico City, Mexiko
Dauer: 16 Juni 202421 Juni 2024

Publikationsreihe

NameFindings of the Association for Computational Linguistics: NAACL 2024 - Findings

Konferenz

Konferenz2024 Findings of the Association for Computational Linguistics: NAACL 2024
Land/GebietMexiko
OrtMexico City
Zeitraum16/06/2421/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren