Platooning of autonomous public transport vehicles: The influence of ride comfort on travel delay

Teron Nguyen, Meng Xie, Xiaodong Liu, Nimal Arunachalam, Andreas Rau, Bernhard Lechner, Fritz Busch, Y. D. Wong

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to 10% and 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort.

OriginalspracheEnglisch
Aufsatznummer5237
FachzeitschriftSustainability (Switzerland)
Jahrgang11
Ausgabenummer19
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Platooning of autonomous public transport vehicles: The influence of ride comfort on travel delay“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren