Pixel level tracking of multiple targets in crowded environments

Mohammadreza Babaee, Yue You, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Tracking of multiple targets in a crowded environment using tracking by detection algorithms has been investigated thoroughly. Although these techniques are quite successful, they suffer from the loss of much detailed information about targets in detection boxes, which is highly desirable in many applications like activity recognition. To address this problem, we propose an approach that tracks superpixels instead of detection boxes in multi-view video sequences. Specifically, we first extract superpixels from detection boxes and then associate them within each detection box, over several views and time steps that lead to a combined segmentation, reconstruction, and tracking of superpixels. We construct a flow graph and incorporate both visual and geometric cues in a global optimization framework to minimize its cost. Hence, we simultaneously achieve segmentation, reconstruction and tracking of targets in video. Experimental results confirm that the proposed approach outperforms state-of-the-art techniques for tracking while achieving comparable results in segmentation.

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2016 Workshops, Proceedings
Redakteure/-innenGang Hua, Herve Jegou
Herausgeber (Verlag)Springer Verlag
Seiten692-708
Seitenumfang17
ISBN (Print)9783319488806
DOIs
PublikationsstatusVeröffentlicht - 2016
VeranstaltungComputer Vision - ECCV 2016 Workshops, Proceedings - Amsterdam, Niederlande
Dauer: 8 Okt. 201616 Okt. 2016

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9914 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzComputer Vision - ECCV 2016 Workshops, Proceedings
Land/GebietNiederlande
OrtAmsterdam
Zeitraum8/10/1616/10/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Pixel level tracking of multiple targets in crowded environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren