PHYSICS-REGULATED DEEP REINFORCEMENT LEARNING: INVARIANT EMBEDDINGS

Hongpeng Cao, Yanbing Mao, Lui Sha, Marco Caccamo

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

This paper proposes the Phy-DRL: a physics-regulated deep reinforcement learning (DRL) framework for safety-critical autonomous systems. The Phy-DRL has three distinguished invariant-embedding designs: i) residual action policy (i.e., integrating data-driven-DRL action policy and physics-model-based action policy), ii) automatically constructed safety-embedded reward, and iii) physics-model-guided neural network (NN) editing, including link editing and activation editing. Theoretically, the Phy-DRL exhibits 1) a mathematically provable safety guarantee and 2) strict compliance of critic and actor networks with physics knowledge about the action-value function and action policy. Finally, we evaluate the Phy-DRL on a cart-pole system and a quadruped robot. The experiments validate our theoretical results and demonstrate that Phy-DRL features guaranteed safety compared to purely data-driven DRL and solely model-based design while offering remarkably fewer learning parameters and fast training towards safety guarantee.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2024
Veranstaltung12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Österreich
Dauer: 7 Mai 202411 Mai 2024

Konferenz

Konferenz12th International Conference on Learning Representations, ICLR 2024
Land/GebietÖsterreich
OrtHybrid, Vienna
Zeitraum7/05/2411/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „PHYSICS-REGULATED DEEP REINFORCEMENT LEARNING: INVARIANT EMBEDDINGS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren