Physics-Model-Regulated Deep Reinforcement Learning Towards Safety & Stability Guarantees

Hongpeng Cao, Yanbing Mao, Lui Sha, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Deep reinforcement learning (DRL) has demonstrated impressive success in solving complex control tasks by synthesizing control policies from data. However, the safety and stability of applying DRL to safety-critical systems remain a primary concern and challenging problem. To address the problem, we propose the Phy-DRL: a novel physics-model-regulated deep reinforcement learning framework. The Phy-DRL is novel in two architectural designs: a physics-model-regulated reward and residual control, which integrates physics-model-based control and data-driven control. The concurrent designs enable the Phy-DRL the mathematically provable safety and stability guarantees. Finally, the effectiveness of the Phy-DRL is validated by an inverted pendulum system. Additionally, the experimental results demonstrate that the Phy-DRL features remarkably accelerated training and enlarged reward.

OriginalspracheEnglisch
Titel2023 62nd IEEE Conference on Decision and Control, CDC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8306-8311
Seitenumfang6
ISBN (elektronisch)9798350301243
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapur
Dauer: 13 Dez. 202315 Dez. 2023

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz62nd IEEE Conference on Decision and Control, CDC 2023
Land/GebietSingapur
OrtSingapore
Zeitraum13/12/2315/12/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Physics-Model-Regulated Deep Reinforcement Learning Towards Safety & Stability Guarantees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren