Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes

Giulio Evangelisti, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

This paper proposes a physically consistent Gaussian Process (GP) enabling the data-driven modelling of uncertain Lagrangian systems. The function space is tailored according to the energy components of the Lagrangian and the differential equation structure, analytically guaranteeing properties such as energy conservation and quadratic form. The novel formulation of Cholesky decomposed matrix kernels allow the probabilistic preservation of positive definiteness. Only differential input-to-output measurements of the function map are required while Gaussian noise is permitted in torques, velocities, and accelerations. We demonstrate the effectiveness of the approach in numerical simulation.

OriginalspracheEnglisch
Titel2022 IEEE 61st Conference on Decision and Control, CDC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4078-4085
Seitenumfang8
ISBN (elektronisch)9781665467612
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung61st IEEE Conference on Decision and Control, CDC 2022 - Cancun, Mexiko
Dauer: 6 Dez. 20229 Dez. 2022

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2022-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz61st IEEE Conference on Decision and Control, CDC 2022
Land/GebietMexiko
OrtCancun
Zeitraum6/12/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren