14 Zitate (Scopus)

Abstract

This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.

OriginalspracheEnglisch
Aufsatznummer8738841
Seiten (von - bis)2453-2464
Seitenumfang12
FachzeitschriftIEEE Transactions on Pattern Analysis and Machine Intelligence
Jahrgang42
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Photometric Depth Super-Resolution“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren