TY - JOUR
T1 - Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation
AU - Stafford, Che A.
AU - Gassauer, Alicia Marie
AU - de Oliveira Mann, Carina C.
AU - Tanzer, Maria C.
AU - Fessler, Evelyn
AU - Wefers, Benedikt
AU - Nagl, Dennis
AU - Kuut, Gunnar
AU - Sulek, Karolina
AU - Vasilopoulou, Catherine
AU - Schwojer, Sophia J.
AU - Wiest, Andreas
AU - Pfautsch, Marie K.
AU - Wurst, Wolfgang
AU - Yabal, Monica
AU - Fröhlich, Thomas
AU - Mann, Matthias
AU - Gisch, Nicolas
AU - Jae, Lucas T.
AU - Hornung, Veit
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/9/15
Y1 - 2022/9/15
N2 - Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1–3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP—but not unmodified MDP—constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.
AB - Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1–3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP—but not unmodified MDP—constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.
UR - http://www.scopus.com/inward/record.url?scp=85136600039&partnerID=8YFLogxK
U2 - 10.1038/s41586-022-05125-x
DO - 10.1038/s41586-022-05125-x
M3 - Article
C2 - 36002575
AN - SCOPUS:85136600039
SN - 0028-0836
VL - 609
SP - 590
EP - 596
JO - Nature
JF - Nature
IS - 7927
ER -