Phase Spaces, Parity Operators, and the Born–Jordan Distribution

Bálint Koczor, Frederik vom Ende, Maurice de Gosson, Steffen J. Glaser, Robert Zeier

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Phase spaces as given by the Wigner distribution function provide a natural description of infinite-dimensional quantum systems. They are an important tool in quantum optics and have been widely applied in the context of time–frequency analysis and pseudo-differential operators. Phase-space distribution functions are usually specified via integral transformations or convolutions which can be averted and subsumed by (displaced) parity operators proposed in this work. Building on earlier work for Wigner distribution functions (Grossmann in Commun Math Phys 48(3):191–194, 1976. https://doi.org/10.1007/BF01617867), parity operators give rise to a general class of distribution functions in the form of quantum-mechanical expectation values. This enables us to precisely characterize the mathematical existence of general phase-space distribution functions. We then relate these distribution functions to the so-called Cohen class (Cohen in J Math Phys 7(5):781–786, 1966. https://doi.org/10.1063/1.1931206) and recover various quantization schemes and distribution functions from the literature. The parity operator approach is also applied to the Born–Jordan distribution which originates from the Born–Jordan quantization (Born and Jordan in Z Phys 34(1):858–888, 1925. https://doi.org/10.1007/BF01328531). The corresponding parity operator is written as a weighted average of both displacements and squeezing operators, and we determine its generalized spectral decomposition. This leads to an efficient computation of the Born–Jordan parity operator in the number-state basis, and example quantum states reveal unique features of the Born–Jordan distribution.

OriginalspracheEnglisch
Seiten (von - bis)4169-4236
Seitenumfang68
FachzeitschriftAnnales Henri Poincare
Jahrgang24
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - Dez. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Phase Spaces, Parity Operators, and the Born–Jordan Distribution“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren