Phase retrieval without small-ball probability assumptions: Stability and uniqueness

Felix Krahmer, Yi Kai Liu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We study stability and uniqueness for the phase retrieval problem. That is, we ask when is a signal x ε Rn stably and uniquely determined (up to small perturbations), when one performs phaseless measurements of the form yi = aTix2 (for i = 1..., N), where the vectors ai ε Rn are chosen independently at random, with each coordinate aij ε R being chosen independently from a fixed sub-Gaussian distribution D. It is well known that for many common choices of D, certain ambiguities can arise that prevent x from being uniquely determined. In this note we show that for any sub-Gaussian distribution D, with no additional assumptions, most vectors x cannot lead to such ambiguities. More precisely, we show stability and uniqueness for all sets of vectors T ⊂ Rn which are not too peaky, in the sense that at most a constant fraction of their mass is concentrated on any one coordinate. The number of measurements needed to recover x ε T depends on the complexity of T in a natural way, extending previous results of Eldar and Mendelson [12].

OriginalspracheEnglisch
Titel2015 International Conference on Sampling Theory and Applications, SampTA 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten411-414
Seitenumfang4
ISBN (elektronisch)9781467373531
DOIs
PublikationsstatusVeröffentlicht - 2 Juli 2015
Veranstaltung11th International Conference on Sampling Theory and Applications, SampTA 2015 - Washington, USA/Vereinigte Staaten
Dauer: 25 Mai 201529 Mai 2015

Publikationsreihe

Name2015 International Conference on Sampling Theory and Applications, SampTA 2015

Konferenz

Konferenz11th International Conference on Sampling Theory and Applications, SampTA 2015
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum25/05/1529/05/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Phase retrieval without small-ball probability assumptions: Stability and uniqueness“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren