Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures

Lam Nguyen, Stein Stoter, Thomas Baum, Jan Kirschke, Martin Ruess, Zohar Yosibash, Dominik Schillinger

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

37 Zitate (Scopus)

Abstract

The voxel finite cell method uses unfitted finite element meshes and voxel quadrature rules to seamlessly transfer computed tomography data into patient-specific bone discretizations. The method, however, still requires the explicit parametrization of boundary surfaces to impose traction and displacement boundary conditions, which constitutes a potential roadblock to automation. We explore a phase-field–based formulation for imposing traction and displacement constraints in a diffuse sense. Its essential component is a diffuse geometry model generated from metastable phase-field solutions of the Allen-Cahn problem that assumes the imaging data as initial condition. Phase-field approximations of the boundary and its gradient are then used to transfer all boundary terms in the variational formulation into volumetric terms. We show that in the context of the voxel finite cell method, diffuse boundary conditions achieve the same accuracy as boundary conditions defined over explicit sharp surfaces, if the inherent length scales, ie, the interface width of the phase field, the voxel spacing, and the mesh size, are properly related. We demonstrate the flexibility of the new method by analyzing stresses in a human femur and a vertebral body.

OriginalspracheEnglisch
Aufsatznummere2880
FachzeitschriftInternational Journal for Numerical Methods in Biomedical Engineering
Jahrgang33
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - Dez. 2017
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren