Petrov-galerkin crank-nicolson scheme for parabolic optimal control problems on nonsmooth domains

Thomas G. Flaig, Dominik Meidner, Boris Vexler

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

Abstract

In this paper we transfer the a priori error analysis for the discretization of parabolic optimal control problems on domains allowing for H2 regularity (i.e. either with smooth boundary or polygonal and convex) to a large class of nonsmooth domains. We show that a combination of two ingredients for the optimal convergence rates with respect to the spatial and the temporal discretization is required. First we need a time discretization scheme which has the desired convergence rate in the smooth case. Secondly we need a method to treat the singularities due to non-smoothness of the domain for the corresponding elliptic state equation. In particular we demonstrate this philosophy with a Crank-Nicolson time discretization and finite elements on suitably graded meshes for the spatial discretization. A numerical example illustrates the predicted convergence rates.

OriginalspracheEnglisch
TitelInternational Series of Numerical Mathematics
Herausgeber (Verlag)Springer
Seiten421-435
Seitenumfang15
DOIs
PublikationsstatusVeröffentlicht - 2014

Publikationsreihe

NameInternational Series of Numerical Mathematics
Band165
ISSN (Print)0373-3149
ISSN (elektronisch)2296-6072

Fingerprint

Untersuchen Sie die Forschungsthemen von „Petrov-galerkin crank-nicolson scheme for parabolic optimal control problems on nonsmooth domains“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren