Persistency of linear programming relaxations for the stable set problem

Elisabeth Rodríguez-Heck, Karl Stickler, Matthias Walter, Stefan Weltge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

The Nemhauser–Trotter theorem states that the standard linear programming (LP) formulation for the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal LP solution that assigns integer values to some variables, there exists an optimal integer solution in which these variables retain the same values. While the standard LP is defined by only non-negativity and edge constraints, a variety of other LP formulations have been studied and one may wonder whether any of them has this property as well. We show that any other formulation that satisfies mild conditions cannot have the persistency property on all graphs, unless it is always equal to the stable set polytope.

OriginalspracheEnglisch
Seiten (von - bis)387-407
Seitenumfang21
FachzeitschriftMathematical Programming
Jahrgang192
Ausgabenummer1-2
DOIs
PublikationsstatusVeröffentlicht - März 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Persistency of linear programming relaxations for the stable set problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren