Persistency of Linear Programming Relaxations for the Stable Set Problem

Elisabeth Rodríguez-Heck, Karl Stickler, Matthias Walter, Stefan Weltge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The Nemhauser-Trotter theorem states that the standard linear programming (LP) formulation for the stable set problem has a remarkable property, also known as (weak) persistency: for every optimal LP solution that assigns integer values to some variables, there exists an optimal integer solution in which these variables retain the same values. While the standard LP is defined by only non-negativity and edge constraints, a variety of stronger LP formulations have been studied and one may wonder whether any of them has the this property as well. We show that any stronger LP formulation that satisfies mild conditions cannot have the persistency property on all graphs, unless it is always equal to the stable-set polytope.

OriginalspracheEnglisch
TitelInteger Programming and Combinatorial Optimization - 21st International Conference, IPCO 2020, Proceedings
Redakteure/-innenDaniel Bienstock, Giacomo Zambelli
Herausgeber (Verlag)Springer
Seiten351-363
Seitenumfang13
ISBN (Print)9783030457709
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung21st International Conference on Integer Programming and Combinatorial Optimization, IPCO 2020 - London, Großbritannien/Vereinigtes Königreich
Dauer: 8 Juni 202010 Juni 2020

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12125 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz21st International Conference on Integer Programming and Combinatorial Optimization, IPCO 2020
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtLondon
Zeitraum8/06/2010/06/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Persistency of Linear Programming Relaxations for the Stable Set Problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren