TY - GEN
T1 - Performance testing of aero-naut CAM folding propellers
AU - Dantsker, Or D.
AU - Caccamo, Marco
AU - Deters, Robert W.
AU - Selig, Michael S.
N1 - Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2020
Y1 - 2020
N2 - The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. By examining a variety of existing long-endurance aircraft, Aero-Naut CAM carbon folding propellers were identified as the most commonly used type of commercial-off-the-shelf propeller. However, no performance data exist in the open literature for the Aero-Naut CAM carbon folding propellers. This paper describes the performance testing of 40 Aero-Naut CAM carbon propellers in 2-blade configuration with diameters of 9 to 16 in with various pitch values. The propellers were tested at rotation rates of 3,000 to 7,000 RPM and advancing flows of 8 to 80 ft/s, depending on the propeller and testing equipment limitations. Results are presented for the 40 propellers tested under static and advancing flow conditions with several key observations being discussed. The data produced will be available for download on the UIUC Propeller Data Site and on the Unmanned Aerial Vehicle Database.
AB - The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. By examining a variety of existing long-endurance aircraft, Aero-Naut CAM carbon folding propellers were identified as the most commonly used type of commercial-off-the-shelf propeller. However, no performance data exist in the open literature for the Aero-Naut CAM carbon folding propellers. This paper describes the performance testing of 40 Aero-Naut CAM carbon propellers in 2-blade configuration with diameters of 9 to 16 in with various pitch values. The propellers were tested at rotation rates of 3,000 to 7,000 RPM and advancing flows of 8 to 80 ft/s, depending on the propeller and testing equipment limitations. Results are presented for the 40 propellers tested under static and advancing flow conditions with several key observations being discussed. The data produced will be available for download on the UIUC Propeller Data Site and on the Unmanned Aerial Vehicle Database.
UR - http://www.scopus.com/inward/record.url?scp=85091271518&partnerID=8YFLogxK
U2 - 10.2514/6.2020-2762
DO - 10.2514/6.2020-2762
M3 - Conference contribution
AN - SCOPUS:85091271518
SN - 9781624105982
T3 - AIAA AVIATION 2020 FORUM
BT - AIAA AVIATION 2020 FORUM
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA AVIATION 2020 FORUM
Y2 - 15 June 2020 through 19 June 2020
ER -