Performance optimisation of the parallel CFD code MGLET across different HPC platforms

Yoshiyuki Sakai, Sandra Mendez, Håkon Strandenes, Martin Ohlerich, Igor Pasichnyk, Momme Allalen, Michael Manhart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

This paper presents the optimisation techniques implemented to run across four HPC platforms the finite-volume computational fluid dynamics (CFD) code MGLET (Multi Grid Large Eddy Turbulence). We analysed and applied refactoring to the parallel communication routines, and reduced the memory footprint significantly, resulting in a substantial improvement of the parallel-scaling capability and in an increase of the maximum number of degrees of freedom for applications. Data structures and files layout were redesigned for implementing parallel I/O in HDF5. The new parallel I/O strategy results in a considerable increase in the average data transfer rate compared with the former serial implementation. An I/O pattern analysis and detailed I/O profiling of the new implementation were then conducted and further performance improvement was achieved by increasing the size of I/O requests and reducing the number of I/O processes. We compare the improved parallel-scaling capability of MGLET on different architectures using representative CFD application test cases.

OriginalspracheEnglisch
TitelProceedings of the Platform for Advanced Scientific Computing Conference, PASC 2019
Herausgeber (Verlag)Association for Computing Machinery, Inc
ISBN (elektronisch)9781450367707
DOIs
PublikationsstatusVeröffentlicht - 12 Juni 2019
Veranstaltung6th Platform for Advanced Scientific Computing Conference, PASC 2019 - Zurich, Schweiz
Dauer: 12 Juni 201914 Juni 2019

Publikationsreihe

NameProceedings of the Platform for Advanced Scientific Computing Conference, PASC 2019

Konferenz

Konferenz6th Platform for Advanced Scientific Computing Conference, PASC 2019
Land/GebietSchweiz
OrtZurich
Zeitraum12/06/1914/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Performance optimisation of the parallel CFD code MGLET across different HPC platforms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren