PEACH: Proactive and Environment Aware Channel State Information Prediction with Depth Images

Serkut Ayvasik, Fidan Mehmeti, Edwin Babaians, Wolfgang Kellerer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Up-to-date and accurate prediction of Channel State Information (CSI) is of paramount importance in Ultra-Reliable Low-Latency Communications (URLLC), specifically in dynamic environments where unpredictable mobility is inherent. CSI can be meticulously tracked by means of frequent pilot transmissions, which on the downside lead to an increase in metadata (overhead signaling) and latency, which are both detrimental for URLLC. To overcome these issues, in this paper, we take a fundamentally different approach and propose PEACH, a machine learning system which utilizes environmental information with depth images to predict CSI amplitude in beyond 5G systems, without requiring metadata radio resources, such as pilot overheads or any feedback mechanism. PEACH exploits depth images by employing a convolutional neural network to predict the current and the next 100 ms CSI amplitudes. The proposed system is experimentally validated with extensive measurements conducted in an indoor environment. We prove that environmental information can be instrumental towards proactive CSI amplitude acquisition of both static and mobile users on base stations, while completely avoiding the dependency on feedback and pilot transmission for both downlink and uplink CSI information. Furthermore, compared to demodulation reference signal based traditional pilot estimation, in ideal conditions without interference, our experimental results show that PEACH yields the similar performance in terms of average bit error rate. More importantly, in the realistic cases with interference taken into account, our experiments demonstrate considerable improvements introduced by PEACH in terms of normalized mean square error of CSI amplitude estimation when compared to traditional approaches.

OriginalspracheEnglisch
TitelSIGMETRICS 2023 - Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
Herausgeber (Verlag)Association for Computing Machinery, Inc
Seiten33-34
Seitenumfang2
ISBN (elektronisch)9798400700743
DOIs
PublikationsstatusVeröffentlicht - 19 Juni 2023
Veranstaltung2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2023 - Orlando, USA/Vereinigte Staaten
Dauer: 19 Juni 202323 Juni 2023

Publikationsreihe

NameSIGMETRICS 2023 - Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems

Konferenz

Konferenz2023 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2023
Land/GebietUSA/Vereinigte Staaten
OrtOrlando
Zeitraum19/06/2323/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „PEACH: Proactive and Environment Aware Channel State Information Prediction with Depth Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren