TY - JOUR
T1 - PD-1 blockade unleashes effector potential of both high- and low-affinity tumor-infiltrating T cells
AU - Martínez-Usatorre, Amaia
AU - Donda, Alena
AU - Zehn, Dietmar
AU - Romero, Pedro
N1 - Publisher Copyright:
Copyright 2018 by The American Association of Immunologists, Inc.
PY - 2018/7/15
Y1 - 2018/7/15
N2 - Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257–264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that aPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
AB - Antitumor T cell responses involve CD8+ T cells with high affinity for mutated self-antigen and low affinity for nonmutated tumor-associated Ag. Because of the highly individual nature of nonsynonymous somatic mutations in tumors, however, immunotherapy relies often on an effective engagement of low-affinity T cells. In this study, we studied the role of T cell affinity during peripheral priming with single-peptide vaccines and during the effector phase in the tumor. To that end, we compared the antitumor responses after OVA257–264 (N4) peptide vaccination of CD8+ T cells carrying TCRs with high (OT-1) and low (OT-3) avidity for the N4 peptide in B16.N4 tumor-bearing C57BL/6 mice. Additionally, we assessed the response of OT-1 cells to either high-affinity (B16.N4) or low-affinity (B16.T4) Ag-expressing tumors after high-affinity (N4) or low-affinity (T4) peptide vaccination. We noticed that although low-affinity tumor-specific T cells expand less than high-affinity T cells, they express lower levels of inhibitory receptors and produce more cytokines. Interestingly, tumor-infiltrating CD8+ T cells show similar in vivo re-expansion capacity to their counterparts in secondary lymphoid organs when transferred to tumor-free hosts, suggesting that T cells in tumors may be rekindled upon relief of tumor immunosuppression. Moreover, our results show that aPD-1 treatment enhances tumor control of high- and low-affinity ligand-expressing tumors, suggesting that combination of high-affinity peripheral priming by altered peptide ligands and checkpoint blockade may enable tumor control upon low-affinity Ag recognition in the tumor.
UR - http://www.scopus.com/inward/record.url?scp=85049850577&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1701644
DO - 10.4049/jimmunol.1701644
M3 - Article
C2 - 29875150
AN - SCOPUS:85049850577
SN - 0022-1767
VL - 201
SP - 792
EP - 803
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -