Patient-Specific Modeling of Daily Activity Patterns for Unsupervised Detection of Psychotic and Non-Psychotic Relapses

Alice Hein, Sven Gronauer, Klaus Diepold

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this paper, we present our submission to the 2nd e-Prevention Grand Challenge hosted at ICASSP 2024. The objective posed in the challenge was to identify psychotic and non-psychotic relapses in patients using biosignals captured by wearable sensors. Our proposed solution is an unsupervised anomaly detection approach based on Transformers. We train individual models for each patient to predict the timestamps of biosignal measurements on non-relapse days, implicitly modeling normal daily routines. The models' mean-normalized prediction errors are then used as indicators of atypical behavior and, thus, risk of relapse. Our final submission ranked 3rd on detecting non-psychotic relapses (Track 1) and 1st on detecting psychotic relapses (Track 2).

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten43-44
Seitenumfang2
ISBN (elektronisch)9798350374513
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung49th IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW 2024 - Seoul, Südkorea
Dauer: 14 Apr. 202419 Apr. 2024

Publikationsreihe

Name2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW 2024 - Proceedings

Konferenz

Konferenz49th IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops, ICASSPW 2024
Land/GebietSüdkorea
OrtSeoul
Zeitraum14/04/2419/04/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Patient-Specific Modeling of Daily Activity Patterns for Unsupervised Detection of Psychotic and Non-Psychotic Relapses“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren