Passivity Based Iterative Learning of Admittance-Coupled Dynamic Movement Primitives for Interaction with Changing Environments

Aljaz Kramberger, Erfan Shahriari, Andrej Gams, Bojan Nemec, Ales Ude, Sami Haddadin

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

29 Zitate (Scopus)

Abstract

Encoding desired motions into dynamic movement primitives (DMPs) is a common way for generating compact task representations that are able to handle sensor-based goal adaptations. At the same time, a robot should not only express adaptive motion capabilities at planning level, but use also contact wrench feedback in the adaptation and learning process of the DMP. Despite first approaches exist in this direction, no fully integrated approach has been proposed so far. In this paper, we introduce a new class of admittance-coupled DMPs that addresses environmental changes by including contact wrench feedback dynamics into the DMP formalism. Moreover, a novel iterative learning approach is devised that is based on monitoring the overall system passivity analysis in terms of reference power tracking. Simulations and experimental results with the Kuka LWR robot maintaining a non-rigid contact with the environment (wiping a surface) are shown for supporting the validity of our approach.

OriginalspracheEnglisch
Titel2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6023-6028
Seitenumfang6
ISBN (elektronisch)9781538680940
DOIs
PublikationsstatusVeröffentlicht - 27 Dez. 2018
Veranstaltung2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spanien
Dauer: 1 Okt. 20185 Okt. 2018

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Land/GebietSpanien
OrtMadrid
Zeitraum1/10/185/10/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Passivity Based Iterative Learning of Admittance-Coupled Dynamic Movement Primitives for Interaction with Changing Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren