Partitioned solution of the unsteady adjoint equations for a strongly coupled fluid-structure interaction problem

Joris Degroote, Majid Hojjat, Electra Stavropoulou, Roland Wüchner, Kai Uwe Bletzinger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Unsteady fluid-structure interaction (FSI) simulations are often time-consuming. As a result, the number of simulations has to be limited in optimisation studies and therefore gradient-based optimisation methods are generally preferred. When the number of optimisation parameters is high, the adjoint equations of the unsteady FSI problem need to be solved to obtain the required gradient at a cost (almost) independent of the number of parameters. In this work, a framework is presented to solve both the forward and the adjoint problem in a partitioned way, which means that the flow equations and the structural equations are solved separately. As an illustration, a one-dimensional example is solved, namely the flow of an incompressible fluid in a straight elastic tube. Due to the strong interaction between the fluid and the structure, quasi-Newton coupling iterations are applied to stabilise the partitioned solution of both the forward and the adjoint problem.

OriginalspracheEnglisch
TitelECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers
Seiten1858-1875
Seitenumfang18
PublikationsstatusVeröffentlicht - 2012
Veranstaltung6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012 - Vienna, Österreich
Dauer: 10 Sept. 201214 Sept. 2012

Publikationsreihe

NameECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers

Konferenz

Konferenz6th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2012
Land/GebietÖsterreich
OrtVienna
Zeitraum10/09/1214/09/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Partitioned solution of the unsteady adjoint equations for a strongly coupled fluid-structure interaction problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren