Parameter Sharing Reinforcement Learning for Modeling Multi-Agent Driving Behavior in Roundabout Scenarios

Fabian Konstantinidis, Ulrich Hofmann, Moritz Sackmann, Jorn Thielecke, Oliver De Candido, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Modeling other drivers' behavior in highly interactive traffic situations, such as roundabouts, is a challenging task. We address this task using a Multi-Agent Reinforcement Learning (MARL) approach that learns a driving policy based on a minimal set of assumptions: drivers want to move forward and avoid collisions while maintaining low accelerations. Each agent's actions depend only on his observation of the local environment; no explicit communication between agents is possible. In order to teach the agents to safely interact with each other, and for example, respect right-of-way rules, we use parameter sharing: During training all vehicles are controlled by the same policy and the aggregated experiences are used to improve the policy. Moreover, parameter sharing enables us to use the efficient Soft Actor Critic (SAC) algorithm for training. The approach is evaluated in a roundabout setting with different traffic densities. Furthermore, the ability of the model to generalize is assessed in an untrained roundabout. In both settings, success rates above 97 % demonstrate that a safe and transferable policy is learned.

OriginalspracheEnglisch
Titel2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1974-1981
Seitenumfang8
ISBN (elektronisch)9781728191423
DOIs
PublikationsstatusVeröffentlicht - 19 Sept. 2021
Veranstaltung2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021 - Indianapolis, USA/Vereinigte Staaten
Dauer: 19 Sept. 202122 Sept. 2021

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2021-September

Konferenz

Konferenz2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021
Land/GebietUSA/Vereinigte Staaten
OrtIndianapolis
Zeitraum19/09/2122/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parameter Sharing Reinforcement Learning for Modeling Multi-Agent Driving Behavior in Roundabout Scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren