Parameter Optimization for Learning-based Control of Control-Affine Systems

Armin Lederer, Alexandre Capone, Sandra Hirche

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

8 Zitate (Scopus)

Abstract

Supervised machine learning is often applied to identify system dynamics where first principle methods fail. When combining learning with control methods, probabilistic regression is typically applied to increase robustness against learning errors. Although this combination of probabilistic regression and control theory allows to formulate performance guarantees for many control techniques, the bounds are usually conservative, and cannot be employed for efficient control parameter tuning. Therefore, we reformulate the parameter tuning problem using robust optimization with performance constraints based on Lyapunov theory. By relaxing the problem through scenario optimization, we derive a with high probability optimal method for control parameter tuning. We demonstrate its flexibility and efficiency on parameter tuning problems for a feedback linearizing and a computed torque controller.

OriginalspracheEnglisch
Seiten (von - bis)465-475
Seitenumfang11
FachzeitschriftProceedings of Machine Learning Research
Jahrgang120
PublikationsstatusVeröffentlicht - 2020
Veranstaltung2nd Annual Conference on Learning for Dynamics and Control, L4DC 2020 - Berkeley, USA/Vereinigte Staaten
Dauer: 10 Juni 202011 Juni 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Parameter Optimization for Learning-based Control of Control-Affine Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren